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Workers’ beliefs, not ability, may limit their opportunities

• Access to elite firms remains highly unequal, shaped by university pedigree and
social networks (Zimmerman, 2019; Chetty et al., 2022; Blair and Chung, 2022)

• Asymmetric information about worker ability leads firms to inefficiently screen
out high-potential candidates—especially early-career workers (Pallais, 2014;

Terviö, 2009)

• A related mechanism is that workers may self-screen out of applying to elite
firms when application costs (e.g., time, effort) are non-trivial (Beam, 2021)

• This self-screening is inefficient if workers are miscalibrated about:
• Second-order beliefs about employer screening (e.g., employers are more

selective than they actually are)

• Their own ability (e.g., workers, especially those without elite credentials, may
believe they are less talented than they are)
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This project: How does self-confidence affect job search?

This project: partner with a large interviewing platform and link platform data for
7,000+ software engineers with downstream employment outcomes

• Fuzzy RD design: Platform provides a salient signal of their coding ability
when performance exceeds a company-determined threshold

• Exceeding threshold ↑ likelihood of signal by 41pp (robust F-stat: > 300)

• Estimate the effects of receiving positive signal on job switches, firm quality,
and average compensation levels

• Examine role of self-confidence using sentiment analysis of worker
self-assessments and video recordings of interviews
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Preview of Findings

• Downstream job search and employment: Receiving the ability signal ...
• Increased job search: likelihood of switching companies ↑ by 20-22pp

• More ambitious job search: likelihood of working at an elite firm ↑ by 15-27pp

• Increased earnings: workers switch to companies with 12-20% higher
compensation

• Heterogeneous effects: Largely driven by users who come from
lower-ranked universities with <5 years of work experience

• Comparing on- vs. off-platform search, we find evidence that effects are due to
belief-updating on the worker side (i.e., ↑ self-confidence), not changes in
screening by firms
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Related Literature

Worker screening and match quality: Farber and Gibbons (1996), Autor (2001),

Lange (2007), Pallais (2014), Blair and Chung (2022), Goldin and Rouse (2000), Amer et al.

(2023), Pallais (2014), Blair and Chung (2022), Zimmerman (2019), and Terviö (2009)

→ We study coding interviews in the Tech sector to document how interview
performance affects job search and employment outcomes.

Self-confidence and labor market outcomes: Benabou and Tirole (2000), Niederle

and Vesterlund (2007), Mobius, Niederle, et al. (2011), Mobius and Rosenblat (2006), Exley and

Kessler (2022), Bandiera et al. (2022), Enke et al. (2023), Aksoy et al. (2024), Tekleselassie et al.

(2025), and Demiral and Mollerstrom (2024)

→ We bridge thies literature with the screening literature by directly separating the
effects of gaining access to job opportunities with receiving a signal of ability, which
are often bundled.
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Overview of Data

• Interviewing platform
• Interview details (e.g., performance scores for coding/communication/problem

solving, self evaluations, interview topic, coding language, video recordings) for
>88K interviews

• User demographics (e.g., age, race, gender, years of experience)

• Job search activity on the platform (e.g., applications, interviews)

• LinkedIn: Employment and education history for 88% of relevant sample

• Levels.fyi: ∼60k individual compensation packages (salary, equity, bonus,
sign-on) by company, level, location, gender in 2019-2023

• Other: US News and Times university rankings; tech company rankings from
prestigehunt
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We partner with a leading tech-sector interviewing platform
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Users are trained, screened, and matched to firms

• Users complete anonymous practice interviews with real professionals

• Scored on coding, communications, problem solving, and “would hire” that are
combined into rolling performance score

• Users significantly improve as they practice Figure

• Users who exceed the performance score threshold receive access to interviews
from 300+ companies Company List

• These interviews can lead to onsite interviews and full-time job offers
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A subset of platform users convert interviews into job offers
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Highly educated and high-earning user base

Mean SD

Demographics
Top 50 University 0.36 0.48
Female 0.19 0.39
Years of Experience 4.74 4.61
Master’s 0.48 0.50
PhD 0.05 0.21
Employed at Signup 0.50 0.50

Job History
Ever Ranked Company 0.71 0.45
Best Company Rank 36.39 31.42
Current Avg. Company Comp. ($) 203,411 48,387

Platform Metrics
Has Jobs Board Access 0.33 0.47
# of Practice Interviews 3.63 5.58
# of Real Interviews 0.18 1.21

N = 8,506
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Example of a practice technical interview
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Interviewers score candidates and provide feedback

This candidate received:

• Coding Score: 2/4

• Problem Solving Score: 1/4

• Communication Score: 2/4

• Would you hire? No

“I could see that you were struggling with this
problem a bit. You solved the first version really well,
including a good analysis of runtime, etc, but the
second version with a different optimization strategy
was tough. I could tell that you grasped the
challenge of the problem and the general style of
solution, but in practice I would have liked to see the
solution come faster and with less guidance. I would
suggest brushing up on combinatorics and dynamic
programming, as they come up a lot in
algorithmic-style questions.”
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Users who gain access receive salient ability signal

Hey Nagisa,

Our goal at [this platform] is to make the job search better for excellent software
engineers like you. As one of our best-performing users, you can now book real
(and still anonymous!) interviews with top companies.

Why do your job search on [this platform]? With us, you skip right to the technical
interview, which means you can interview tomorrow without resumes, recruiter
calls, or haranguing your friends for referrals. Also, your interview takes place on
[this platform], so everything is anonymous unless you both decide to move
forward. There’s no harm in trying it out!

Check out the companies hiring on [this platform] right now!
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Access to interviews motivates fuzzy RD (IV)

Yi = βAi + f (Scorei) + γXi + εi

• Yi = outcome for individual i

• Scorei ∈ (−0.60, 0.56) is the rolling performance score relative to cutoff τ

• Ai = 1[Scorei ≥ 0] is an instrument for gaining jobs board access

• f (·) is max order 2 polynomial, interacted with Ai (Imbens and Lemieux, 2008;

Cattaneo et al., 2019)

• Xi = controls (e.g., gender, degree type, educational background)

• Sample restricted to US users who gained access prior to 2023
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Cutoff τ changed 15 times between 2018-2023
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Access to interviews motivates fuzzy RD Cleaner RD

N =  7,092
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No bunching in running variable at cutoff
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Covariates are stable across the threshold

N =  7,144
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Jobs board access induces users to switch jobs

Switch Job Within 1 Year

Full Sample Discontinuity Discontinuity
Sample (±0.2) Sample (±0.08)

(1) (2) (3) (4) (5)

Has Jobs Board Access 0.209** 0.203** 0.223*** 0.085 0.114*
(0.090) (0.084) (0.038) (0.112) (0.068)

Observations 7,092 5,847 3,171 3,171 1,363
Polynomial Order 2 2 – 1 –
Interacted Instruments Y Y N Y N
Degree FE N Y N Y N
Visa Control N Y N Y N
Gender FE N Y N Y N
Experience Controls N Y N Y N
Mean Outcome 0.264 0.271 0.235 0.235 0.225
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More specifically, to move across companies

Switch Company Within 1 Year

Full Sample Discontinuity Discontinuity
Sample (±0.2) Sample (±0.08)

(1) (2) (3) (4) (5)

Has Jobs Board Access 0.227*** 0.219*** 0.218*** 0.102 0.111*
(0.085) (0.079) (0.037) (0.107) (0.066)

Observations 7,092 5,847 3,171 3,171 1,363
Polynomial Order 2 2 – 1 –
Interacted Instruments Y Y N Y N
Degree FE N Y N Y N
Visa Control N Y N Y N
Gender FE N Y N Y N
Experience Controls N Y N Y N
Mean Outcome 0.242 0.246 0.214 0.214 0.208
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Increased likelihood of working at a “top firm” Top Firm Details

Work At A Top Tech Company Within 1 Year

Full Sample Discontinuity Discontinuity
Sample (±0.2) Sample (±0.08)

(1) (2) (3) (4) (5)

Has Jobs Board Access 0.153* 0.210*** 0.271*** 0.085 0.112
(0.079) (0.081) (0.044) (0.126) (0.079)

Observations 6,966 5,793 3,142 3,142 1,350
Polynomial Order 2 2 – 1 –
Interacted Instruments Y Y N Y N
Degree FE N Y N Y N
Visa Control N Y N Y N
Gender FE N Y N Y N
Experience Controls N Y N Y N
Mean Outcome 0.388 0.402 0.416 0.416 0.453
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Which translates to higher expected compensation

Log Avg. Company Compensation Within 1 Year

Full Sample Discontinuity Discontinuity
Sample (±0.2) Sample (±0.08)

(1) (2) (3) (4) (5)

Has Jobs Board Access 0.123** 0.119* 0.193*** -0.063 0.034
(0.060) (0.070) (0.040) (0.125) (0.069)

Observations 3,183 2,751 1,540 1,540 702
Polynomial Order 2 2 – 1 –
Interacted Instruments Y Y N Y N
Degree FE N Y N Y N
Visa Control N Y N Y N
Gender FE N Y N Y N
Experience Controls N Y N Y N
Mean Outcome ($) 186,484 185,706 184,772 184,772 187,467
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Effects persist and grow stronger over time

Works at Top Firm in 2023

Full Sample Discontinuity Discontinuity
Sample (±0.2) Sample (±0.08)

(1) (2) (3) (4) (5)

Has Jobs Board Access 0.271*** 0.325*** 0.415*** 0.196 0.238***
(0.073) (0.077) (0.044) (0.126) (0.079)

Observations 7,004 5,821 3,156 3,156 1,355
Polynomial Order 2 2 – 1 –
Interacted Instruments Y Y N Y N
Degree FE N Y N Y N
Visa Control N Y N Y N
Gender FE N Y N Y N
Experience Controls N Y N Y N
Mean Outcome 0.547 0.567 0.561 0.561 0.591

23 / 29



Key Takeaways

• 20-22pp higher likelihood of switching to a new company within 1 year

• 15-27pp higher likelihood of working at a top firm within 1 year

• 12-20% higher expected compensation within 1 year
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Who is most resposive to this ability signal?

1. Direct: workers gain access to interviews that convert into job offers
• ∼ 150 individuals accept job offers through the platform while ∼ 800 workers

with access switch jobs → cannot explain the full effect

• Preparing for real interviews on platform reduces the cost/increases the benefit
of additional interviews off platform

2. Indirect: workers gain a credible signal on their ability which give workers new
information about their ability

In both cases, we expect workers who had (1) less access to credible signals on
their ability or (2) had noisier resume signals of ability to employers prior to the
platform to be most responsive
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Who has a harder time signaling ability?

(1) (2) (3)
Log Avg. Pre-Comp Prior Company Is Top Company Prior Company Rank

Top 50 University 0.093*** 0.066*** -4.377***
(0.009) (0.010) (1.255)

Years of Experience 0.020*** 0.028*** -0.153
(0.003) (0.003) (0.403)

Observations 4,099 10,122 3,270
R2 0.035 0.022 0.009
Controls Y Y Y

• Less experienced workers from less prestigious educational pedigrees worked at
lower-paid jobs at lower-ranked companies

• These workers may have noisier resume signals of ability and/or have had fewer
reliable signals of their own ability relative to the pool of software engineers
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Effects driven by novice workers from lower-ranked
universities
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Mechanisms: self-confidence or a foot in the door?

Next steps to isolate self-confidence as a mechanism:

• Quantifying self-confidence among platform users
• videos

• self-assessment on perceived interview performance

• Heterogeneity by self-confidence

• Sentiment analysis on users’ confidence before vs. after access in interviews

• Tenure at firms from Linkedin to quantify worker-firm match quality
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Conclusion

• Using data from an interviewing platform that matches users to tech jobs
based on performance, we employ a fuzzy RD design to estimate the effect of
a credible ability signal on labor market outcomes

• We find that jobs board access increases the one-year probability of switching
companies by 20%, probability of working at a top firm by 15%, and expected
compensation by 12%

• Effects are driven by inexperienced workers from less prestigious educational
and job history backgrounds
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Thank you!
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Users improve as they practice on the platform Back
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Summary Statistics of Interviews

Practice Real Real + Top 20 Univ. Real + US-educated

Interviewee Scores
Would Hire (0, 1) .55 .62 .68 .63
Code Score (1-4) 2.88 3.08 3.17 3.08
Problem Solving Score (1-4) 2.82 3.06 3.17 3.07
Comm. Score (1-4) 3.26 3.27 3.4 3.33
Self Eval. (1-4) 2.48 2.85 2.91 2.85

Interviewer Scores
Would Work With (0, 1) .92 .94 .91 .94
Question Quality (1-4) 3.68 3.57 3.52 3.58
Hint Quality (1-4) 3.67 3.67 3.65 3.68
Excited to Work With (1-4) 3.57 3.55 3.52 3.55

Interview Length (min.) 57 62 58 59
N 80,688 6,226 1,008 2,479
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Fuzzy RD: First Stage (2021-2023) Back
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What companies hire on this platform? Back

# of Technical Interviews # of Onsites Rank

Lyft 258 107 36
Uber 172 68 40
X 168 28 74
Commure 157 40 –
Asana 152 61 73
Flexport 138 66 92
Liftoff 132 43 –
Checkr 112 55 –
Cruise 111 49 53
Edo 109 34 –
Indeed 96 19 117

Back to platform details
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Reassuringly, no changes in pre-access variables Back

Log Avg. Compensation, Pre-Access

(1) (2) (3) (4)

Has Access 0.035 0.033 0.065 0.074
(0.074) (0.071) (0.061) (0.066)

Performance Score 0.168** 0.165** 0.160 0.013
(0.070) (0.072) (0.320) (0.339)

Performance Score Sq. -0.063 -0.080 -0.375
(0.096) (0.581) (0.609)

Observations 2,813 2,813 2,813 2,510
R2 0.035 0.035 0.037 0.027
Polynomial Order 1 2 2 2
US Only Y Y Y Y
Interacted Instruments N N Y Y
Controls N N N Y
Sample Full Full Full Full
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Practice performance varies by university tiers

University Rank: Top 20 20-50 50-200 >200

Would Hire 0.55 0.50 0.51 0.44
Code Score 2.86 2.79 2.81 2.69
Comm Score 3.33 3.23 3.26 3.15
Problem-solving Score 2.80 2.71 2.75 2.62
Starting Code Score 2.80 2.73 2.76 2.64
Starting Comm Score 3.32 3.21 3.26 3.14
Starting Problem-solving Score 2.71 2.64 2.68 2.55

Gets Access (%) 30 25 26 22
Interview Duration (min) 57 56 57 56
# Practice Interviews 4 4 3 3
Observations 2363 3445 1449 10740
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But much less so conditional on getting access

University Rank: Top 20 20-50 50-200 >200

Would Hire 0.77 0.72 0.75 0.72
Code Score 3.15 3.14 3.12 3.13
Comm Score 3.50 3.46 3.46 3.42
Problem-solving Score 3.08 3.06 3.06 3.04

# Practice Interviews 6 6 6 6
Switches Jobs within 1 year (%) 28 28 30 26
Post-access expected compensation 203,867 196,244 193,531 189,778
Pre-access expected compensation 194,023 182,768 184,738 179,209
Observations 710 860 374 2376
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Real performance varies by university tiers

University Rank: Top 20 20-50 50-200 >200

Would Hire 0.66 0.61 0.62 0.58
Code Score 3.14 2.98 3.08 3.00
Comm Score 3.44 3.28 3.28 3.23
Problem-solving Score 3.17 3.00 3.03 2.98

# Interviews 3 3 3 3
Switches Jobs within 1 year (%) 20 27 20 22
Post-access expected compensation 213,094 200,736 187,703 193,553
Pre-access expected compensation 199,359 183,414 185,375 177,351
Observations 286 325 145 914
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What is a “top” tech firm? Back to intro Back to 2nd stage

• We obtained a ranking of 132 companies that are considered “prestigious”
from prestigehunt

• Within these 132 companies, companies are put in head-to-head matches and
are then evaluated by users. Rankings are determined using the Elo rating
system with a dynamic K-factor based upon number of matches played.

• New companies are added to the list once they have participated in enough
head-to-head matches

• Companies include (in order): Nvidia, Databricks, Meta, Netflix, Two Sigma,
Jane Street, Deepmind, Optiver, Citadel, Palantir, D.E. Shaw, Jump Trading,
Renaissance Technologies, LinkedIn, Google
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